Download TikTok video without watermark
3 months ago
Figure 4 from Gimbals in the insect leg. | Semantic Scholar
We studied the common kinematic features of the coxa and trochanter in cursorial and raptorial legs, which are the short size of the podomers, predominantly monoaxial joints, and the approximate orthogonality of adjacent joint axes. The chain coxa-trochanter with its short elements and serial orthogonality of joint axes resembles the gimbals which combine versatility and tolerance to external perturbations. The geometry of legs was studied in 23 insect species of 12 orders. Insects with monoaxial joints were selected. The joint between the trochanter and the femur (TFJ) is defined either by two vestigial condyles or by a straight anterior hinge. Direction of the joint axes in the two basal podomers was assessed by 3D measurements or by goniometry in two planes. Length of the coxa is <15% (mostly <8%) of the total length of the cursorial leg, that of the trochanter <10%. Angles between the proximal and distal joint axes in the middle coxa range from 124 to 84 degrees (mean 97+/-14 degrees ), in the trochanter (in all legs studied) from 125 to 72 degrees (mean 90+/-13 degrees ). Vectors of the distal axis in the coxa are concentrated about the normal to the plane defined by the proximal axis and the midpoint between the distal condyles. These vectors in the trochanter lie at various angles to the normal; angles are correlated with the direction of the TFJ relative to the femur. Range of reduction about the TFJ is over 60 degrees in the foreleg of Ranatra linearis, Mantispa lobata and the hind leg in Carabus coriaceus (confirming observations of previous authors), 40-60 degrees in the foreleg of Vespa crabro and in the middle one in Ammophila campestris, 10-30 degrees in other studied specimens. The special role of the trochanter in autotomy and in active propulsion in some insect groups is discussed. The majority of insects possess small trochanters and slightly movable TFJs with the joint axis laying in the femur-tibia plane. We pose the hypothesis that the TFJ damps external forces, the vectors of which lie off the femur-tibia plane, the reductor muscle acting as a spring. Thus the TFJ contributes to dynamic stability of legged locomotion.
1082 saves
271 repins
Similar Pinterest ideas
Insect Biology
8 days ago
Scolopendra alternans (Haitian Giant Centipede or Keys Giant Centipede)
3 months ago
20 months ago
21 months ago
Earthworm Anatomy
3 months ago
3 months ago
Chalcosoma mollenkampi IMG_6605 copy
3 months ago
Identifying spiders: I know I’m new here and something may have been posted like this. Just wanted to help with these tips for getting better ids from your pics. Will post two links.
14 months ago
7 months ago
Britannica Kids
28 days ago
cicada's Belly by stewi0001 on DeviantArt
1 month ago
91 months ago